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Read cleaning

Some assemblers choke with: bad quality stretches, adapters, low complexity regions,
contamination.

Bad quality vector

TTGTTATCCGE TEACAAT TECACACARC TATCCGGTARCTATCGTCTTGE iCCAG TTACCTT C GHAARARG
7ol [f=]) a7a 958

128 138 148

Trim Trim or mask




The repeat assembly problem

Only one read is usually not capable of producing the complete sequence.
Even if the problem sequence is short one read might have sequencing errors.

repeats
Unknown sequence (NN H I |
Reads
contig5 (repeat)
Contigs / scaffolds contig1 contig2 contig3 contig4
Repeated region no coverage

Reasons for the gaps



The repetitive problem 1s unsurmontable
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copy 1 copy2
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Long reads



Read size influence

In the ideal case each piece would be a chromosome or a transcript



Mate pairs and paired-ends

Read length is critical, but constrained by sequencing technology, we can sequence
molecule ends.

Clone (template) G
reads ) {1

Useful for dealing with repetitive genomic DNA and with complex transcriptome structure.
Paired-ends: lllumina can sequence from both ends of the molecules. (150-500 bp)

Mate-pairs: Can be generated from libraries with different lengths (2-20 Kb).

BAC-ends: Usually sequenced with Sanger.




Mate-pairs

Nextera mate-pair

(llumina)
ABCDEF... . CUVWXYZ
X
-ABCDEF... ...U\."‘..N’)(YZ-H

Y

J
S
_FEDCBAadapterZYXWVU =
|
«— —»
ABCDEF... L UVWXYZ

I




[1lumina mate-pair chimeras

chimeric

nextera mate-pairs
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Long reads

Pacbio:
« Standard
e HiFi
Nanopore:

* Long
« Ultralong




Library types

Single reads

——

lllumina Pair Ends (150-500 pb)

Mate Pairs (2-10 kb)

[llumina
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Long reads

Hlumina TruSeq Pacific Oxford Nanopore
Synthetic Long Reads Biosciences Technologies
Technology Barcoded & Amplified Single Molecule Nanopore
Synthetic long reads Real Time Sequencing Sequencing
Mean Length 3-5kbp 10-15kbp 5-10kbp
Raw Error Rate 0.1% 10-15% 10-30%
Costs / GB ~$2500° ~$500' ~$1000’

Third-generation sequencing and the future of genomics. Lee et al.



Short reads are harder to assemble

1. Overlap Effect: For same number of sequenced bases, shorter reads
require more coverage to achieve comparable N50.

Assembly 1. Assembly 2.
9 reads of length = 30bp. 3 read length = 90.

Total sequenced bases = 270. Total sequenced bases = 270.
Assemble with min overlap = 20bp. Assemble with min overlap = 20bp.
Result = 7 contigs. Result = | contig.
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2. Repeat Effect: Shorter reads resolve fewer repeats.

Repeat length = 600bp. Repeat length = 600bp. Repeat length = 600bp.
Read length = 800bp (Sanger). Read length = 400bp (454). Read length = 75bp (Solexa).
Reads span the repeats. Reads bridge the repeats. Repeats not resolved.
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The need for paired reads

1. Variety of insert sizes will span variety of repeats.

Inserts that span the repeat High coverage in mates Larger repeats require
will enable scaffolds. will tile the repeat. larger insert sizes.

< S e e

2. Mates can resolve repeats even if not possible to tile with reads.

placement of repeat contig.

|
- Mates guide multiple
.‘_




Algorithm I

Overlap — Layout - Consensus



Overlap — Layout - Consensus

Algorithm:

* QOverlap: All-against-all, pair-wise read comparison.
« Layout: construction of an overlap graph with approximate read layout.

Overlaps detection

clean reads All vs all alignment
1 I
> I H N
3 ]
+ I B

lea»2<4>» 3 <> 4
Reads graph



Overlap — Layout - Consensus

Algorithm:

 All-against-all, pair-wise read comparison.
« Construction of an overlap graph with approximate read layout.
» Consensus: Multiple sequence alignment (MSA) determines the consensus sequence.

clean reads Overlaps d_etection MSA
All vs all alignment
1 B B
2 IS H N H I
3 . ] ]
4 IS ] T
le»2<» 3 <» 4 I
Reads graph Consensus



Overlap assumption

We are assuming:

* 1) Two reads originated from the same region will overlap

« 2) Two reads that overlap come from the same region

1iT2




Overlap problems

Two reads are similar if they have a good overlap.
We assume that overlap implies common origin in the genome.
This goodness depends on the overlap quality and similarity.

But several things might go wrong
Vector contamination repetitive Too many sequencing errors
or repetitive

Chimeric clone

Short overlap

false positive
false negative




Overlap problems

False positives will be induced by chance and repeats
Avoid false positives with stringent criteria:

e Overlaps must be long enough

* Sequence similarity must be high (identity threshold)

* Overlaps must reach the ends of both reads

* Ignore high-frequency overlaps (repetitive regions in genomic?)

Unique region of genome. Repeat region of genome.

i /o

\1\‘_....-

':.._\H eads from elsewhere.

But stringency will induce false negatives.



Assembly terminology

Consensus ACTGATTAGCTGACGNNNNNNNNNNTCGTATCTAGCATT

Scaffolds = Contigs +
Parings
(gap lengths derived from pairings)

Contigs = Reads +
Overlaps

Overlaps

Reads & Pairing




Contigs

Contigs:

 High-confidence overlaps

Maximal contigs with no contradiction (or almost no contradiction) in the data
Ungapped

Contigs capture the unique stretches of the genome.

Usually where unitigs end, repeats begin

A foverlaps B & C)

C (overlaps D& E)
D

E

Contig example. The ideal Contig is A, B, C.
C, D and E have a repetitive sequence.




Scaffolds

Build with mate pairs

* Mate pairs help resolve ambiguity in overlap patterns

Scaffolds

« Every contig is a scaffold
* Every scaffold contains one or more contigs
« Scaffolds can contain sequence gaps of any size (including negative)




Overlap-Consensus-Layout limitation
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Computational requirements

5000

0 20 40 60 an 100 120 140 160 180 200

MNumber of reads (M)

30 Million 5Kb (long) reads
Number of alignments: 30 M reads x 30 M reads = 900 trillion alignments (It does not scale!!)
Main requirements:

Memory.
Time.

The kmer-based assemblers requirements depend on the genome complexity and not so much on the
reads.



Algorithm 11

kmer-based



K-mer based assembly

Seq ACTGGTCAT
K-mers opb ACTGG
CTGGT
TGGTC
GGTCA

GTCAT




K-mer based assembly

K-mer graphs are de Bruijn




K-mer based assembly

K-mer graphs are de Bruijn graph.

Nodes represent all K-mers.

Edges join consecutive K-mers.

Assembly is reduced to a graph reduction problem.

Read 1 AACCGG
Read 2 CCGGTT

Graph: | AACC| ->|ACCG|-> |CCGG |->|CGGT | ->| GGTT

K-mer length = 4




K-mer based assembly

K-mer graphs derived from reads and genome is very similar
From the graph we can recreate the genome sequence
K-mer graph size depends, mostly on genome size, not on number of reads

Reads are only read once to prepare the kmer graph

Read 1 AACCGG
Read 2 CCGGTT

v

Graph: | AACC| ->|ACCG|-> |CCGG |->|CGGT | ->| GGTT

o'

Genome: AACCGGTT




K-mer based assembly

reads
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Kmer graph ACTG—CTGA—TGAT—GATA—ATAC—TACG—ACGT—CGTT—GTTC—TTCC—TCCA—~CCAG—CAGG

Genomic A C T G A T A C G T T C C A G G




K-mer bubbles
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Kmer graph ACTG—CTGA—TGAT—GATA GTTC=TTCC—TCCA=CCAG-CAGG
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Het. bubble
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Seq. error bubble



K-mer repetitive

/Repetiti\/e
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Graph problems

Repeats, sequencing errors and polymorphisms increase graph complexity, leading to
tangles difficult to resolve

K-mer graphs are more sensitive to repeats and sequencing errors than overlap based
methods.

Optimal graph reductions algorithms are NP-hard, so assemblers use heuristic algorithms

Polymorphism Sequencing error
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Quality Assessment



N50

NS0 is defined as the contig length such that using equal or longer contigs produces half
the bases of the assembly.

* NG50: 50% of the genome (if available)

The N50 statistic is a measure of the average length of a set of sequences, with greater
weight given to longer sequences.
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N50

Ry
|
Unsorted | -
contigs :
! _—
|
=" 200K
[ 1408
[ 110K
Sorted __.1' ?%ESK
contigs ! 50K
! 35K
e 18K  m—
12K ==
3K =

Total contig length= 200K + 140K + 110K + 70K + 65K + 50K + 35K + 18K + 12K + 3K= 703K
50% total contig length= 703K x 50%= 351.5K

"."200K+140K +110K> 351.5K + .".N50= 110K



N50

short NSO  — — —

Long N50




N50 for scaffolds and contigs

Long
Scaffold
N50

Short - - - -
Contig — E— —
N50 S S

short
Scaffold
N50

Long

Contig -
N50 o




BUSCO orthologs

http://busco.ezlab.org/

Anguilla anguilla (Genome)
Anguilla anguilla (Transcriptome)
Danio rerio

Esox lucius (Genome)

Exos lucius (Transcriptome)
Gnathonemus petersi
Lepisosteus oculatus
Osteoglossum bicirrhosum
Salmo salar

Takifugu rubripes
Xiphophorus maculatus

.Complete and single copy
Bl Complete and duplicated

Fragmented

.Missing
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Mapping reads against the assembly
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Reads used to create the assembly

Other reads from the same species

Percentage of reads mapped

* Most reads should properly map




Mapping reads against the assembly

i read coverage '|

ii type of read coverage, on each strand

4 / Properly paired

e s Orphaned
s Wl o T 7 T N P NP e P e
= VI

ilii read clipping

\ Reads only

partially aligned

If the base of interest lies in a gap
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Main assembly hurdles

Main Problems:

» Short, inaccurate sequence reads
* genomic repeats

- Difficulty of the assembly depends a lot on the genome: easy for bacteria, very difficult for long
highly repetitive polyploids

Main solutions:

* Long reads

e Low sequencing error rates:
- Simplify graph problem
- Complex graphs typically yield worse assemblies
- Allow to differentiate between repeats




Common assembly errors

Collapsed repeats

 Align reads from distinct (polymorphic) repeat copies
* Fewer repeats in assembly than in genome
* Fewer tandem repeat copies in assembly than genome

Missed joins
* Missed overlaps due to sequencing error

» Contradictory evidence from overlaps
« Contradictory or insufficient evidence from pairs

Chimera

* Enter repeat at copy 1 but exit repeat at copy 2
* Assembly joins unrelated sequences




Ingredients for Good Assembly

Coverage and read length
« 20X for (corrected) PacBio, 150X for lllumina

Paired reads

* Read lengths long enough to place uniquely
Inserts longer than long repeats

Pair density sufficient to traverse repeat clusters
Tight insert size variance

Diversity of insert sizes

Read Quality:

* Sequencing errors
* No vector contamination
« Contamination: mitochondrial or chloroplastic

The requirements depend greatly on the quality: it is not the same a draft that high quality
genome.



Common assemblers

Genomic

e SOAPdenovo, lllumina

 Canu: Pacbio and lllumina

Staden for Sanger reads.

Transcriptomic assemblers are specialized software




Assembly comparison

Empirical evaluation of methods for de novo genome assembly

* https://peerj.com/articles/cs-636/
The best assemblers and parameters depend a lot on the genome and on the information
available
Arabidopsis thaliana:
« SOAPdenovo2 produces much larger contigs than any other assembler
* it has many assembly errors
» SPAdes appeared to be preferable
Bacillus cereus
« SOAPdenovo2 has the fewest contigs, as well as a low N50 value
* its error rate was among the best
Human genome
* HiFiasm outperformed other assemblers
e problems with mismatches and misassemblies.

Flye has consistently demonstrated superior output based on contig size, with the trade-off
between scale and error rate. Hinge and Canu, though they demonstrate more errors than
Flye, both performed reasonably well too.


https://peerj.com/articles/cs-636/

K-mer analysis



K-mer analysis

21- of sea urchin
(Strongylocentrotus purpuratus) (900
Mbase long)

unique %ﬂ

Ge+08 Be+08
] ]

genomewide frequency
de+08
|

repetitive

y

Ze+08
|

Oe+00
]

| | | | |
o 10 20 20 40

kmer matches



K-mer analysis

K-mer distribution
Simulated reads.
40X coverage

No errors

1e+0G

librarywide frequency

Genome

4e+08 Be+03 8e+08 1e+09

genomewide frequency

2e+08

reads
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K-mer analysis

K-mer distribution cenome
real reads.
50X coverage
With errors
. Real reads (with errors) , , , ,
i n Oi se %_ Slmulatereads (no error)
s = ]
5 &7 .

] 20 40 60 a0 100

kmer matches



From scafflods to
chromosomes



Genetic maps
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Bionano

1| Sequence-specific labeling 3 |[Fluorescence imaging
Nickase (Nt.BspQl)

5 -ATGCGCTCTTCCATGAATGCGAGC-3’
3'-TACGCGAGAAGGTACTTACGCTCG-5’

Nick
labeling
4

Wy
GAAJYQT

v |
5 -ATGCGCTCTTCCATGAATGCGAGC-3’
3'-TACGCGAGAAGGTGCTTACGCTCG-5"

4 | Map construction

2 | DNA linearization N ’ —ml_“ “ﬂ_ ” ’ l

Output:

sequence motif (GCTCTTC) map
along hundreds-kb to megabase

Lam et al., Nat. Biotechnol. 30(8) 2012 DNA stretches




Bionano

o0 o0
- Bionano helps you solve long range structures
\_._“ oo (although not chromosome wide assemblies)
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Bionano

Maolecule Size Distribution

¥ .hh l

Used for de novo assembly

TR

i 1853 i

t_-g http://olomouc.ueb.cas.cz/




Bionano

Genome map 14

100kb 100kb
0 200k 400k 600k 800k 1,000k 1,200k 1400k 1600k 1800k 2,000k 2200k 2400k 2600k 2800k

O AL NI ANNALAALOME AN A AAA

Single molecule maps




10X linked reads

Reads generated from the same long DNA sequence are tagged with the same index and
sequenced using lllumina

Reads with the same index convey medium range information (Up to 100Kb)




10X GemCode

10x GemCode™ Technology for Partitioning High
Molecular Weight gDNA

ey P00 0T 0OOT | W &

e ~10 HMW gDNA molecules in
each GEM are mixed with
I barcoded primers and enzymes

for isothermal incubation

10x Barcoded Gel Beads T

HMW gDNA Oil
Enzyme




10X linked reads assembly
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10x possible uses

De novo genome assembly

Haplotype phasing

Structural Variants:

* Linked read sequencing resolves complex genomic rearrangements in gastric cancer
metastases (https://doi.org/10.1186/s13073-017-0447-8)

* Integrative analysis of genomic alterations in triple-negative breast cancer in association with
homologous recombination deficiency. (DOI: 10.1371/journal.pgen.1006853)



https://doi.org/10.1186/s13073-017-0447-8

Tomato assembly example

__ 10X-Bionano

1.789.934 813.655 16.105.568 6.758.801
L75 141 288 18 40
N’s per 100 Kb 0 6071 2325 14885

Cost $$3 $ $85$ $$




Pacbio HiF1 vs Nanopore ultralong

Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi
reads of Pacific Biosciences Sequel |l system and ultralong reads of Oxford Nanopore

* https://doi.org/10.1093/gigascience/giaa123

Comparison with rice genome

ONT ultralong:

* 92 Gb data (230x) with an N50 of 41,473 bp
* higher contiguity

- 18 contigs of which 10 were assembled into a single chromosome compared to 394 contigs and 3
chromosome-level contigs for the PacBio assembly

- prevented assembly errors caused by long repetitive regions. PacBio assembly: over- or
underestimation of the gene families

Pacbio HiFi:
» 20 Gb HiFi reads (50x) average length 13,363 bp
» fewer errors at the level of single nucleotides and small insertions and deletions



Hi-C

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the
Human Genome. (DOI: 10.1126/science.1181369)

Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using
restriction and mark pull down biotin paired-ends
HindIll enzyme with biotin
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Hi-C Assembly

De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length
scaffolds. (DOI: 10.1126/science.aal3327)

Hi-C data provide links across a variety of length scales

Unlike mate-pair and pair-end reads Hi-C contact spans an unknown length and may
connect loci on different chromosomes

Human genome assembly:

* Pair-end lllumina reads (67X coverage)
* Hi-C data (6.7 coverage)
» 23 scaffold that span the 99.5% of the 23 human chromosomes

» Errors remain in the ordering of short distances than could be fixed by mate-pairs, long reads or
bionano




Haplotypes



The haplotype problem

Haplotype 1
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The haplotype problem

Haplotype 1
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The haplotype problem

Ideal assembly
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Source of info 1: Good quality long reads

Haplotype-resolved de novo assembly using phased
assembly graphs with hifiasm

Haoyu Cheng, Gregory T. Concepcion, Xiaowen Feng, Haowen Zhang & Heng Li ’

Nature Methods 18, 170-175 (2021) | Cite this article
8349 Accesses | 29 Citations | 117 Altmetric | Metrics A C

Abstract

Haplotype-resolved de novo assembly is the ultimate solution to the study of sequence

variations in a genome. However, existing algorithms either collapse heterozygous alleles

into one consensus copy or fail to cleanly separate the haplotypes to produce high-quality

phased assemblies. Here we describe hifiasm, a de novo assembler that takes advantage of

Ionﬁ hiﬁh-ﬁde]itz sequence reads to faithfully represent the haplotype informationina —
phased assembly graph. Unlike other graph-based assemblers that only aim to maintain the

contiguity of one haplotype, hifiasm strives to preserve the contiguity of all haplotypes. T G

This feature enables the development of a graph trio binning algorithm that greatly }

advances over standard trio binning. On three human and five nonhuman datasets,
including California redwood with a ~30-Gb hexaploid genome, we show that hifiasm

frequently delivers better assemblies than existing tools and consistently outperforms

others on haplotype-resolved assembly.




Long distance haplotype info

10X

Hi-C

Single strand seq




Single strand seq
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Long distance haplotype info: parental trio
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Haplotype assembly with hifiasm

Additional short read data:

* Hi-C pair ends or Strand-seq

— improves contiguity and phasing accuracy
* Parental trios

- Improves phasing accuracy
— Advisable specially for high heterozygosity

Hifiasm does not perform scaffolding for now

Checked with human and California redwood with a ~30-Gb hexaploid genome

Similar to HiCanu

Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat
Methods, 18:170-175. https://doi.org/10.1038/s41592-020-01056-5
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